sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling.

نویسندگان

  • Natalie Gibb
  • Danielle L Lavery
  • Stefan Hoppler
چکیده

Wnt signalling is a key regulator of vertebrate heart development, yet it is unclear which specific Wnt signalling components are required to regulate which aspect of cardiogenesis. Previously, we identified Wnt6 as an endogenous Wnt ligand required for controlling heart muscle differentiation via canonical Wnt/β-catenin signalling. Here we show for the first time a requirement for an endogenous Wnt signalling inhibitor for normal heart muscle differentiation. Expression of sfrp1 is strongly induced in differentiating heart muscle. We show that sfrp1 is not only able to promote heart muscle differentiation but is also required for the formation of normal size heart muscle in the embryo. sfrp1 is functionally able to inhibit Wnt6 signalling and its requirement during heart development relates to relieving the cardiogenesis-restricting function of endogenous wnt6. In turn, we discover that sfrp1 expression in the heart is regulated by Wnt6 signalling, which for the first time indicates that sfrp genes can function as part of a Wnt negative-feedback regulatory loop. Our experiments indicate that sfrp1 controls the size of the differentiating heart muscle primarily by regulating cell fate within the cardiac mesoderm between muscular and non-muscular cell lineages. The cardiac mesoderm is therefore not passively patterned by signals from the surrounding tissue, but regulates its differentiation into muscular and non-muscular tissue using positional information from the surrounding tissue. This regulatory network might ensure that Wnt activation enables expansion and migration of cardiac progenitors, followed by Wnt inhibition permitting cardiomyocyte differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt ligand required for regulating vertebrate heart development via the canonical Wnt pathway, but surprisingly discovered a function at later stages of development, during organogenesis preceding cardiomyocyte differentiation

INTRODUCTION During vertebrate embryonic development, heart progenitors acquire the potential to subsequently differentiate as cardiomyocytes in the myocardium and form the functional heart muscle (Mohun et al., 2000; Mohun et al., 2003; Nakajima et al., 2009). Identifying how these cardiac progenitors are controlled and the source of signals regulating differentiation is of fundamental importa...

متن کامل

Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development

Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors,...

متن کامل

IL-17A Inhibits Osteogenic Differentiation of Bone Mesenchymal Stem Cells via Wnt Signaling Pathway

BACKGROUND Interleukin-17A (IL-17A) is not only an important modulator of inflammatory reactions, but also affects bone metabolism, which is involved in osteogenic differentiation of stem cells. However, the role and mechanism of IL-17A in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) are not fully understood. In this study, we investigated the role and mechanism of IL-17A i...

متن کامل

Dev115691 4794..4805

Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors,...

متن کامل

N-Cadherin Negatively Regulates Osteoblast Proliferation and Survival by Antagonizing Wnt, ERK and PI3K/Akt Signalling

BACKGROUND Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 140 7  شماره 

صفحات  -

تاریخ انتشار 2013